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Abstract 27 

Information on colored dissolved organic matter (CDOM) is essential for understanding and 28 

managing lakes but is often not available, especially in lake-rich regions where concentrations 29 

are often highly variable in time and space. We developed remote sensing methods that can use 30 

both Landsat and Sentinel satellite imagery to provide census-level CDOM measurements across 31 

the state of Minnesota, USA, a lake-rich landscape with highly varied lake, watershed, and 32 

climatic conditions. We evaluated the error of satellite derived CDOM resulting from two 33 

atmospheric correction methods with in situ data, and found that both provided substantial 34 

improvements over previous methods. We applied CDOM models to 2015 and 2016 Landsat 8 35 

OLI imagery to create 2015 and 2016 Minnesota statewide CDOM maps (reported as absorption 36 

coefficients at 440 nm, a440) and used those maps to conduct a geospatial analysis at the 37 

ecoregion level. Large differences in a440 among ecoregions were related to predominant land 38 

cover/use; lakes in ecoregions with large areas of wetland and forest had significantly higher 39 

CDOM levels than lakes in agricultural ecoregions. We compared regional lake CDOM levels 40 

between two years with strongly contrasting precipitation (close-to-normal precipitation year in 41 

2015 and much wetter conditions with large storm events in 2016). CDOM levels of lakes in 42 

agricultural ecoregions tended to decrease between 2015 and 2016, probably because of dilution 43 

by rainfall, and 7% of lakes in these areas decreased in a440 by ≥ 3 m-1. In two ecoregions with 44 

high forest and wetlands cover, a440 increased by more than 3 m-1 in 28 and 31% of the lakes, 45 

probably due to enhanced transport of CDOM from forested wetlands. With appropriate model 46 

tuning and validation, the approach we describe could be extended to other regions, providing a 47 

method for frequent and comprehensive measurements of CDOM, a dynamic and important 48 

variable in surface waters.  49 
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 53 

1. Introduction 54 

Research in recent decades has revealed a central role for colored (or chromophoric) 55 

dissolved organic matter (CDOM) in regulating major physical, chemical and biological 56 

processes in lakes and rivers (e.g., reviewed in Solomon et al. 2015, Williamson et al. 1999, 57 

Creed et al. 2018, and elsewhere). We now know that CDOM functions as one of a small number 58 

of "master variables," similar to phosphorus, pH and redox potential, that control important 59 

aspects of the composition and functioning of aquatic ecosystems and regulate their responses to 60 

environmental change (Williamson et al. 1999, Creed et al. 2018). Recent studies show that 61 

CDOM levels strongly influence: (a) light and thermal regimes in lakes (e.g., Houser 2006, Ask 62 

et al. 2009, Thrane et al. 2014, Pilla et al. 2018, Snucins and Gunn 2000), (b) biogeochemical 63 

cycles (e.g., Knoll et al. 2018, Corman et al. 2018), (c) food web processes and interactions (e.g., 64 

Karlsson et al. 2009, Solomon et al. 2015), (d) contaminant bioavailability (e.g., Tsui and Finlay 65 

2011), and (e) water clarity (e.g., Brezonik et al. 2019a). Knowledge of the sources, levels, and 66 

cycling of CDOM in freshwaters thus is important for aquatic resource management and for 67 

predicting the outcomes of environmental change.  68 

Moderate to high levels of CDOM in freshwaters are determined largely by rates of 69 

transport from soils and wetlands in surrounding watersheds and thus are affected by a 70 

combination of factors related to vegetation and hydrology. The dependency of aquatic CDOM 71 

on dynamic external sources, combined with internal production and loss processes in aquatic 72 
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systems, can lead to high variability of CDOM levels across landscapes and within lakes at time 73 

scales of seasons to years (Brezonik et al. 2015, Williamson, et al. 2015). Human-driven changes 74 

in temperature, atmospheric chemistry, land use and watershed hydrology also can have strong 75 

effects on CDOM (Creed et al. 2018, Finstad et al. 2016, Kritzberg 2017, Stanley et al. 2012, de 76 

Wit 2018).  77 

Although CDOM is easily measured in the laboratory, the availability of in situ CDOM 78 

data is surprisingly limited relative to its importance, even in states like Minnesota, where 79 

monitoring of its > 10,000 surface waters is a major focus of many state, tribal and local 80 

agencies. Several recent, large-scale assessments of regional U.S. lake monitoring efforts 81 

(Stanley et al. 2012; Ross et al. 2019) showed that far fewer data were available for CDOM and 82 

related variables such as DOC compared to nutrients, chlorophyll, and water clarity, despite the 83 

strong effects of CDOM on those and other physicochemical variables. The spatial and temporal 84 

variation in CDOM in surface waters suggests the need for more CDOM data to improve 85 

understanding of drivers and better predict lake responses to stresses ranging from local land-86 

cover changes to global climate change. Some countries with large numbers of CDOM-rich lakes 87 

have incorporated routine monitoring of CDOM or a related parameter such as DOC (e.g., Sobek 88 

et al. 2007). The relative lack of CDOM data for U.S. lakes (Stanley et al. 2019) may stem from 89 

the fact that many monitoring programs initially started in relatively low-CDOM regions but also 90 

from the fact that the importance of CDOM as a driver of ecological conditions has been 91 

appreciated only recently.  92 

Whatever the cause, the availability of CDOM data remains deficient compared to its 93 

importance. Remote sensing using satellite-based sensors could play an important role in 94 

providing CDOM data at high temporal and spatial resolution. Recent studies show that the 95 
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Landsat sensors (Kutser et al. 2005, Brezonik et al. 2005, Kutser et al. 2009, Olmanson et al. 96 

2016a), and Sentinel-2/MSI sensors (Toming et al. 2016, Chen et al. 2017) can provide such data 97 

at scales relevant for inland lakes as small as 4 hectares (ha).  98 

Recent improvements in Earth-observing satellite sensors have expanded the capabilities 99 

to measure optically-related water quality characteristics, including CDOM, in lakes (Olmanson 100 

et al. 2016a; Tyler et al. 2016, Pahlevan et al. 2019, Page et al. 2019). Specifically, the Landsat 8 101 

Operational Land Imager (L8/OLI) and the European Space Agency (ESA) Sentinel-2 102 

MultiSpectral Imager (S2/MSI) have improved spatial, spectral, radiometric and temporal 103 

resolution compared with earlier sensors. With the L8/OLI and S2/MSI constellation collecting 104 

imagery every 3 to 5 days, frequent satellite-based measurements of a variety of key water 105 

quality variables on lakes are now possible.  106 

The use of satellite imagery to measure CDOM at large regional scales and over multiple 107 

time periods requires analysis of multiple images. Unless ground-based data are available to 108 

calibrate each image (a requirement difficult to achieve), accurate methods are needed for 109 

atmospheric correction of images to produce surface reflectance data directly representative of 110 

optical signals from waterbodies. Although various approaches have been reported to accomplish 111 

this (e.g., Pahlevan et al. 2017a,b and Vanhellemont and Ruddick 2015, 2016), we have found 112 

that many of them yield unreliable results for inland lakes (Olmanson et al. 2011, Page et al. 113 

2019). The recent availability of surface reflectance products from the EROS Center appears to 114 

have overcome this obstacle for Landsat 8 imagery (Kuhn et al. 2019), and Page et al. (2019) 115 

described a workflow process to atmospherically correct and harmonize S2/MSI and L8/OLI 116 

satellite imagery in Google’s Earth Engine (GEE) (Gorelick et al. 2017). 117 

This paper describes application of these advances to measure CDOM on all waterbodies 118 
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larger than 4 ha across a large geographic region (the state of Minnesota) that encompasses more 119 

than 226,000 km2 and contains officially 11,842 lakes 4 ha or larger in area 120 

(https://www.dnr.state.mn.us/faq/mnfacts/water.html). The paper describes a robust semi-121 

empirical approach for routine monitoring of CDOM using L8/OLI imagery. We demonstrate the 122 

consistency and reliability of two atmospheric correction methods to generate remote sensing 123 

reflectance (Rrs) products and use these products to assemble a CDOM database on more than 124 

10,500 lakes for both 2015 and 2016. We assess the accuracy of retrieved CDOM data for both 125 

low- and high-CDOM waters and summarize distributions of CDOM in Minnesota lakes at the 126 

ecoregion level. 127 

 128 

2. Methods 129 

2.1 Study area 130 

Minnesota, a large, lake-rich state in the Upper Midwest of the U.S., comprises parts of 131 

seven ecoregions (Omernik and Griffith 2014) that differ in land-cover, geology, soils, 132 

vegetation and hydrologic conditions (Figure 1). Known popularly as “the land of 10,000 lakes,” 133 

Minnesota actually has approximately 12,000 waterbodies with surface areas ≥ 4 ha (Olmanson 134 

et al. 2014) and many more that are smaller than that. The lakes are distributed broadly (but not 135 

uniformly) across the ecoregions. Two ecoregions, the Northern Lakes and Forests (NLF) and 136 

North Central Hardwood Forest (NCHF), together comprise 49% of the state’s area and contain 137 

84% of the state’s lakes (47% and 37%, respectively). According to Olmanson et al. (2014), 138 

about one-fourth of the heavily forested NLF (mixed conifers and hardwoods) is wetlands and 139 

lakes; only 4% is urban and 7% agricultural land. The high proportion of forest (66%) and 140 

wetlands (14%) leads to high CDOM levels in many NLF surface waters (Griffin et al. 2018; 141 
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Brezonik et al. 2019a,b). In contrast, half of the NCHF is agricultural land, and about 10% is 142 

urban or suburban; forests account for only about 17% of the ecoregion, and wetlands constitute 143 

11% of the landscape.  144 

The Western Corn Belt Plain (WCBP) occupies most of southern Minnesota and is 145 

dominated (~ 77%) by row-crop agriculture (mainly corn and soybean); its land-cover is only ~ 146 

7% forested. The Northern Glaciated Plains (NGP) ecoregion occupies a small region of 147 

southwest Minnesota and is similar to the WCBP in agricultural land cover (74%) but has a 148 

higher percentage of grassland (9%). Together, the WCBP and NGP contain 12% of the state’s 149 

lakes. The Lake Agassiz Plain (LAP) ecoregion (Omernik and Griffith 2014), formerly called the 150 

Red River Valley ecoregion (Omernik 1987), has the highest percentage (84%) of agricultural 151 

land among the state’s ecoregions, and the flat land is a remnant of glacial Lake Agassiz. This 152 

ecoregion has only 215 lakes (2% of the state’s total). The Northern Minnesota Wetlands 153 

(NMW) ecoregion is contiguous to the NLF and is similarly heavily forested (52%). The NMW 154 

has more wetlands (19%), however, and its flat landscape contains few lakes, although three of 155 

the state’s largest lakes, Upper and Lower Red Lake and Lake of the Woods, are in the NMW. 156 

The non-glaciated Driftless Area in southeastern Minnesota has only a few small manmade 157 

ponds and reservoirs and backwater areas of the Mississippi River. 158 

 159 

2.2 Calibration data 160 

 A dataset of ground-based CDOM levels for satellite imagery calibration was developed 161 

from our ongoing CDOM studies (e.g., Griffin et al. 2018, Brezonik et al. 2019a,b) and includes 162 

data from the Minnesota Pollution Control Agency (MPCA) and several other agencies and 163 

collaborators. Sampling in 2015 was focused in the NLF and NCHF in northern Minnesota 164 
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(Figure 1) and was expanded to include the NMW ecoregion in 2016 and the WCBP, NGP, and 165 

LAP ecoregions in 2017. Most lakes were sampled only once, but a selection of lakes were 166 

sampled once each year and a few were sampled approximately monthly in 2016 or 2017. 167 

Details of sampling were provided previously (Griffin et al. 2018; Brezonik et al. 2019). All 168 

observations (site-date combinations) were treated separately; i.e., multiple samples from a 169 

lake were not averaged. A total of 1,586 CDOM measurements were collected over 2015-2018, 170 

many from routine monitoring efforts by collaborators (Brezonik et al. 2019a). These efforts 171 

provided a large dataset of field measurements for calibration and validation. 172 

 Sampling procedures and field and laboratory analyses followed standard limnological 173 

practices. Detailed methods were described by Griffin et al. (2018). In brief, most water samples 174 

were collected from ~ 0.25 m below the lake surface; the MPCA samples were a 0-2 m 175 

integrated sample of the epilimnion. Water for CDOM analysis was filtered through 0.45 µm 176 

Geotech High Capacity filters and stored in the dark at 4 °C in pre-ashed 40 mL amber glass 177 

bottles until analysis within 1 month of collection. Samples for DOC were acidified using 2 M 178 

HCl and stored in pre-ashed 20 mL glass bottles at 4°C. Other samples were stored in acid-179 

washed and triple-rinsed polycarbonate or high-density polyethylene bottles and filtered for 180 

analysis of various dissolved constituents within 24 h of collection.   181 

CDOM was determined from absorbance measurements at 440 nm, using a Shimadzu 182 

1601UV-PC dual beam spectrophotometer through 1 or 5 cm quartz cuvettes against a nanopure 183 

water blank. Absorbance was converted to Napierian absorption coefficients (Kirk 2010) using: 184 

a440 = 2.303A440/l  (1) 185 
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where: a440 is the absorption coefficient at 440 nm, A440 is absorbance at 440 nm, and l is cell 186 

path length (m). Absorbance scans were blank-corrected before conversion. CDOM values are 187 

reported as a440 (m-1). 188 

 189 

2.3 Image acquisition and processing 190 

A critical component of image processing for aquatic environments is a consistent 191 

atmospheric correction (AC) method that can yield reliable estimates of the surface water-192 

leaving reflectance (ρw), an optically active input parameter for various satellite-based water 193 

quality models (Gordon and Wang 1994). We evaluated atmospherically corrected L8/OLI 194 

remote sensing reflectance (Rrs = ρw/π) products derived from the Modified Atmospheric 195 

Correction for INland waters (MAIN) (Page et al. 2019) method implemented in Google Earth 196 

Engine (GEE) (Gorelick et al., 2017) to map CDOM in Minnesota lakes. Mean Rrs values were 197 

extracted from a 50-m buffer around each sample location within the open water area of each 198 

lake using a collection of clear imagery from L8/OLI to develop a CDOM retrieval algorithm. 199 

Paths of clear L8/OLI imagery with coincident field data from 2015 and 2016 were used for 200 

model calibration, and coincident L8/OLI and S2/MSI imagery from 2018 were used with 201 

corresponding field data for independent validation of the results. Finally, Rrs values from the 202 

U.S. Geological Survey Surface Reflectance Product (OLI-SR version 1.3.0) also were evaluated 203 

for cross-model comparisons. 204 

 205 

2.4 CDOM modeling approach 206 

Because CDOM concentrations in most lakes are stable on at least a short-term basis 207 

(days to weeks) (e.g., Brezonik et al. 2015), we used calibration/validation data that had been 208 
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collected within 30 days of imagery. This yielded 250 calibration measurements corresponding 209 

to five clear paths of L8/OLI imagery in 2015 and 2016 (Table 1). An additional 157 210 

measurements from MAIN-processed coincident Landsat 8 and Sentinel-2 imagery for August 211 

13, 2018 were used for independent validation and harmonization of the L8/OLI and S2/MSI 212 

sensors (Table 1); 62 of these measurements corresponded with clear L8/OLI imagery and 95 213 

corresponded with clear S2/MSI imagery. The calibration set included lakes distributed across 214 

the state with a wide range of CDOM (a440 = 0.2-32.5 m-1). The CDOM range in the validation 215 

set fit closely with the calibration set at low to moderate CDOM levels (up to a440 ~ 10 m-1) but 216 

lacked higher values (Table A1) because wildfire smoke (originating in California USA and 217 

Canada) caused haze interference in northern Minnesota, where the high CDOM lakes occur, for 218 

the August 13, 2018 validation imagery. 219 

To explore the potential of all available OLI bands and band ratios to predict CDOM, 220 

modeled as ln(a440), we used the bootstrap forest technique in JMP Pro 14 SAS Institute (2018) 221 

and evaluated the most significant combinations. The calibration dataset of measured a440 values 222 

corresponding with the five clear L8/OLI image paths was used as the dependent variable 223 

(Tables 1 and A1), and MAIN-derived (and OLI-SR) mean Rrs values for L8/OLI bands B1-B5 224 

and all band-ratio permutations were the independent input variables (26 total terms). The two 225 

highest-contributing terms that produced the highest coefficient of determination (R2) and lowest 226 

root mean square error (RMSE) with measured data were identified using step-wise regression 227 

and were used to develop the models. 228 

To evaluate model predictive capability, the data were divided into four randomized 229 

groups. For each possible combination, three groups were used as a training set to develop a 230 

correlation, and the remaining group was used as a confirmation set. Performance of the models 231 
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generated from the four randomly selected calibration/confirmation datasets was evaluated from 232 

the coefficient of determination (R2) and root mean square error (RMSE) for model-predicted vs. 233 

measured a440, and the average and range of performance of the four datasets were calculated.  234 

As an additional check on the consistency of the model over a broader temporal scale and 235 

MAIN harmonization of L8/OLI and S2/MSI Rrs values, we applied the model derived from 236 

L8/OLI imagery to the independent validation datasets described above (Table 1). Accuracy was 237 

compared against measured a440 for each validation image using mean absolute error (MAE)  238 

 MAE = 
∑ |�440,sensor��440,in situ|�

���

�
    (2) 239 

where a440,sensor is either a440,MSI or a440,OLI. MAE = 0 indicates a perfect fit. 240 

 241 

2.5 Statewide CDOM database  242 

To create the 2015 statewide CDOM map, we used five clear paths (i.e., images from the 243 

same path and date but from multiple rows (two to five) to cover the state) of L8/OLI imagery 244 

(Table 1). For the 2016 map there were five mostly clear paths from 2015, but because a few 245 

areas in western Minnesota did not have any clear imagery in 2016, we also used two clear paths 246 

of 2017 L8/OLI imagery to fill in missing areas to complete the 2016 map (Table 1). To produce 247 

maps, the validated CDOM model was applied to the corresponding selected MAIN-derived Rrs 248 

bands in the GEE application program interface (API) (Page et al. 2019) for each path of 249 

imagery (Table 1) used for the 2015 and 2016 CDOM maps and exported in GeoTIFF format. 250 

The paths were mosaicked into statewide maps using ERDAS Imagine to create 2015 and 2016 251 

pixel-level CDOM maps for Minnesota. To create a lake-level database, we used a polygon layer 252 

previously constructed (Olmanson et al. 2008) to include all Minnesota lakes, reservoirs and 253 
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open-water wetlands ≥ 4 ha and the signature editor in ERDAS Imagine to extract a440 data for 254 

all lakes in the images using the lake polygon layer. The GetHist program (Olmanson et al. 2008) 255 

was used to calculate the mean a440 values from the middle 70 percent and linked to each lake 256 

polygon to create lake-level maps for 2015 and 2016.  257 

To compile the data for analysis of CDOM at the ecoregion level, we used Esri ArcMap 258 

10.5.1 to link each lake polygon to its respective ecoregion, and JMP Pro 14 to calculate CDOM 259 

distributions for each Minnesota ecoregion. 260 

 261 

3. Results and discussion 262 

3.1 CDOM model results 263 

After exploration of various two-term regression models using L8/OLI, we identified the 264 

best model as having the form:  265 

 266 

ln(a440) = a(Rrs(B4)/Rrs(B3)) + b(Rrs(B5)/Rrs(B3))) + c   (3)  267 

     268 

where coefficients, a, b, and c were fit to the calibration data by regression analysis, ln(a440) is 269 

the natural logarithm of the L8/OLI-derived a440 for a given sample location and B represents the 270 

corresponding L8/OLI spectral band. From the combined L8/OLI dataset, the ln(a440) prediction 271 

model generated a strong fit with R2 = 0.85 and RMSE = 0.49 for MAIN, and R2 = 0.83 and 272 

RMSE = 0.52 for OLI-SR (Table A2, Figure 2). MAIN-based results also fit closer to the 1:1 273 

line than OLI-SR results, but both methods provided a better fit in the lower and higher ranges 274 

than our previous efforts (Olmanson et al. 2016a, b). 275 
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To evaluate model performance in different CDOM ranges, we split the data into low, 276 

medium and high sets (a440 = 0.2-3.0, 3-10 and 10-32.5 m-1, respectively) and calculated MAE 277 

(Table 2a). In all ranges, MAIN-corrected imagery had lower MAE values than OLI-SR-278 

corrected imagery, and although the MAE increased with a440, the values were a relatively small 279 

fraction of the median a440 for the range. We also plotted measured a440 from low to high with 280 

model predicted a440 for MAIN and OLI-SR (Figure 3). MAIN-based results fit closer to the line 281 

for field measured a440 than OLI-SR results and deviation from the line for field measured a440 282 

increased with increasing CDOM.  283 

 The use of MAIN or OLI-SR image correction together with the best-fit model resulted 284 

in substantial improvements in CDOM estimation compared to previous methods, largely due to 285 

improved atmospheric correction and a relatively large and varied in situ dataset (Figure 2). In 286 

comparison with other models in the literature, the green/red model of Kutser et al. (2005a) and 287 

red/green model of Menken et al. (2006) when applied to the combined L8/OLI dataset 288 

generated comparatively weak linear regressions with ln(a440): R2 values of 0.46 and 0.51, 289 

respectively, and higher RMSE values of 0.93 and 0.88, respectively (Table A2). The green/blue, 290 

red model of Griffin et al. (2011), which uses the blue band, where CDOM absorption is much 291 

stronger, generated no convincing relationship (average R2 = 0.04, RMSE = 1.24), which 292 

indicates interference from other optically active constituents (Table A2). Compared against 293 

previous models, our approach offered substantial improvements in a440 measurements especially 294 

in the higher and lower ranges. 295 

 296 

3.2 CDOM model validation 297 
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The semi-empirical model developed here was applied to some 2015, 2016 and 2017 298 

L8/OLI images that were not used for model development to complete the 2015 and 2016 299 

CDOM maps for Minnesota. Because these data do not have in situ validation data it is important 300 

to use an independent validation dataset to determine the accuracy that can be expected when the 301 

model is used on images not included in the calibration dataset. The validation dataset consists of 302 

overlapping L8/OLI and S2/MSI images acquired on August 13, 2018 that were mostly clear but 303 

had visible wildfire smoke in northern Minnesota. The L8/OLI validation data for the low and 304 

medium CDOM ranges resulted in higher MAE values (1.46 and 2.26 m-1, respectively) than 305 

found for the corresponding calibration results (MAE = 0.42 and 1.79 m-1, respectively) using 306 

Eq. (2) (Table 2b). The MAE of 1.63 m-1 for the whole validation dataset is comparable to that 307 

for the calibration dataset with a MAE of 1.61 m-1, likely because of the lack of high CDOM 308 

values in the validation data (because the haze problem in northern Minnesota imagery). Despite 309 

the lack of high CDOM lakes, the validation data range still represented a large majority (> 92%) 310 

of surface waterbodies in Minnesota; CDOM values > 10 m-1 occurred in only 8% of the state’s 311 

surface waters. If we consider only lakes and reservoirs and exclude open-water wetlands (i.e. 312 

shallower waterbodies that have abundant aquatic vegetation but include open-water areas where 313 

CDOM measurements can be extracted), CDOM > 10 m-1 occurred in only 6% of the lakes. The 314 

S2/MSI validation dataset yielded larger MAE values of 1.58 and 2.90 m-1 (Table 2b) for the low 315 

and medium CDOM ranges than corresponding values for the calibration data (0.43 and 2.05 m-316 

1, Table 2a). The larger errors could indicate that the validation imagery is less than ideal, 317 

especially for the lower CDOM values, because smoke effects may have been more widespread 318 

than what was obvious for northern Minnesota. Nevertheless, the MAE values indicate 319 

acceptable confidence in the resulting maps.  320 
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 321 

3.3 Geospatial analysis of statewide CDOM database  322 

 For geospatial analysis of CDOM at the ecoregion level, we calculated the mean CDOM 323 

value for each waterbody (i.e. lakes, reservoirs and open-water wetlands) using the pixel-level 324 

maps for 2015 and 2016 (Figures A1 and A2, respectively). These maps are also available in an 325 

online LakeBrowser at https://lakes.rs.umn.edu/.  Satellite-derived a440 values encompassed broad 326 

ranges – from near undetectable (0.1 m-1) to ~ 25.5 m-1 in both years. Standard deviations across 327 

all waterbodies for both years were larger than the mean values, and median values were less 328 

than the mean values (Table 3) indicating skewed distributions, with many more low-CDOM 329 

waterbodies than high ones. Large differences in means, medians and statistical distributions 330 

were found between the ecoregions, with high CDOM waters concentrated mainly in the NLF 331 

and NMW. Nonetheless, a few waterbodies had high CDOM levels in all ecoregions in both 332 

years. Standard deviations for a440 within all ecoregions were close to or larger than the mean 333 

values, consistently indicating skewed distributions. Mean a440 and distributional statistics were 334 

similar for the four southern and western ecoregions (NCHF, WCBP, NGP, LAP), and in all 335 

cases 90% of their waterbodies had a440 < ~ 6 m-1. 336 

Using the individual waterbody data for both years, we calculated the 2015-2016 mean 337 

value for each waterbody and created a “lake-level” map (Figure 4). The associated statistical 338 

distributions by ecoregion (Figure A3 and Table 4a) are similar to those described above for the 339 

individual years. The mean a440 values for the two most northern ecoregions (NLF and NMW) 340 

were higher than the means for the other four ecoregions in both years and for the average over 341 

the time period, and the differences were even more pronounced for the 75% and 90% quantile 342 

values. For example, 10% of the waterbodies in the NLF and NMW had average a440 values > 343 
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17.5 m -1 in 2015-2016, but the 90% quantile values for the other four ecoregions were only 4.4-344 

5.4 m-1 (Table 4a). 345 

Waterbodies with high CDOM tend to have watersheds dominated by forests and 346 

wetlands, but further inspection of high CDOM waterbodies in agricultural ecoregions (e.g., 347 

WCBP, NGP) indicated that they were mainly open-water wetlands with abundant aquatic 348 

vegetation, where vegetation and bottom effects could affect Rrs and provide erroneous results 349 

with satellite imagery methods. Ideally, pixels affected by aquatic vegetation or bottom sediment 350 

would be masked because they are unsuitable for remotely sensed estimates of water quality. 351 

Open-water wetlands were not well represented in the calibration dataset, however, because they 352 

typically are ringed with emergent vegetation and are difficult to access. Because masking all 353 

affected pixels is not always possible in large regional assessments, it is important to know the 354 

limitations of the analysis and whether the satellite-based measurements are realistic for the 355 

waterbodies that are being studied. Open-water wetlands tend to have high DOM concentrations, 356 

which suggests that the satellite-based measurements are correct, but this issue needs further 357 

investigation in future studies.  358 

To minimize the effects of shallower open-water wetlands on CDOM statistical 359 

distributions, we removed these waterbodies from the dataset and found distributions (Figure A4 360 

and Table 4b) similar to those in Table 4a but with fewer high CDOM waters in the agricultural 361 

ecoregions. Overall, mean a440 values and distributional statistics (except for maximum values) 362 

were slightly lower in all ecoregions for the subset without open-water wetlands. For example, 363 

for the four ecoregions with low average CDOM levels, the 90% quantile values were ~80% of 364 

the corresponding values for the dataset that includes the shallow open-water wetlands (Table 365 
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4a), suggesting that on average, open-water wetlands tend to have slightly higher CDOM levels 366 

than lakes and reservoirs. 367 

 368 

3.4 Potential sources of error 369 

Considering error levels indicated by MAE, atmospheric correction by MAIN resulted in 370 

lower error than using OLI-SR (Table 2a, Figure 3), with overall MAE averages of 1.61 and 1.82 371 

m-1, respectively. MAE values for both correction methods increased across the three CDOM 372 

ranges (low, medium, high) with MAIN and OLI-SR, and they represented ~25-30% of the 373 

midpoint a440 values of each range. Although the model developed using L8/OLI imagery 374 

worked reasonably well with our validation S2/MSI imagery, MAE values for the validation set 375 

were consistently lower for L8/OLI than for S2/MSI. Further research with a larger dataset 376 

would help to determine whether a separate S2/MSI model could improve the relationship with 377 

measured data.  378 

Although Brezonik et al. (2015) concluded that CDOM is generally stable on intra-379 

seasonal time scales, we found large fluctuations in CDOM in some highly colored lakes in 380 

flowage systems (i.e., with large watersheds relative to lake areas) following large storm events 381 

in summer of 2016. For this study, we used CDOM data within 30 days of image acquisition, but 382 

because numerous storm events occurred in the state during summer of 2016, this could have 383 

been too large a window for some highly colored flowage lakes and could account for some of 384 

the overall error. The low Rrs signals from high-CDOM, low-suspended sediment water and 385 

potential errors in atmospheric correction of such waters also could be contributing factors.  386 

Differences between satellite and field measurements could originate from many sources 387 

including (1) differences in spatial coverage (20-30 m pixels vs. a single grab sample), (2) 388 
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temporal variations in CDOM between the time of satellite overpass and sample collection, (3) 389 

errors in collection and laboratory analyses, (4) differences that may arise in predicting measured 390 

a440 from any retrieval model, and (5) satellite atmospheric correction errors.  The latter 391 

potentially may have been exacerbated by haze differences due to smoke in the validation vs. the 392 

calibration dataset in this study. Given these issues and some uncertainties associated with the 393 

representativeness of field data, it may be better simply to regard satellite-based methods as the 394 

standard values for census-level CDOM data at regional scales. Ground-based measurements are 395 

simply infeasible to gather at such spatial scales and short timescales. Of course, use of clear 396 

imagery and appropriately calibrated models is essential for accurate results.  397 

 398 

3.5 Applications to research and management 399 

CDOM data for thousands of lakes measured at seasonal to annual time scales with the 400 

satellite imagery methods described here are invaluable for lake management and research. 401 

CDOM directly affects many important characteristics of lakes, such as temperature and light 402 

regimes, primary production, and carbon cycling. It also affects many variables relevant to lake 403 

management, including fisheries production and contaminant concentrations and reactivity.  404 

Despite its important role, in situ data for CDOM are much more limited compared to other key 405 

variables, such as chlorophyll and phosphorus (Stanley et al. 2019). Thus, frequent measurement 406 

of CDOM at regional scales represents an important resource for research and management. 407 

To illustrate the use of large-scale CDOM measurements, we examined the changes in 408 

CDOM levels between two consecutive years with contrasting rainfall. Using the lake subset 409 

(Table A3), we analyzed the change in a440 between 2015 and 2016. Comparison of precipitation 410 

ranking maps for 2015 and 2016 shows major contrasts in hydrologic regimes between the years, 411 
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with 2015 fairly typical for most areas and 2016 unusually wet for most of the state, including 412 

the NMW and NLF ecoregions (Figure A5). Comparing CDOM levels between years 2015 and 413 

2016 (Table A4), we found that levels decreased by at least 3 m-1 in about 7% of the lakes in 414 

agricultural ecoregions (LAP, NGP and WCBP), but levels increased in the ecoregions with 415 

more forest and wetlands (Figure 5). Within the NMW and NLF ecoregions, 31% and 28% of the 416 

lakes, respectively, had changes in a440 ≥ 3 m-1, but only 5% of the lakes in the NCHF (a 417 

transition ecoregion) changed more than 3 m-1. It also is interesting to note that the mean and 418 

median a440 values for the two high-CDOM ecoregions (NLF and NMW) increased substantially 419 

from 2015 to 2016 (Table A3). In contrast, in almost all cases these statistics decreased in the 420 

ecoregions with more agricultural and less forest/wetland land cover, apparently because of 421 

dilution by increased precipitation. Although CDOM is generally stable at timescales of weeks to 422 

months for many lakes, this analysis suggests that lakes in watersheds with large CDOM source 423 

areas (i.e. forested wetlands) can exhibit substantial precipitation-driven variability. De Wit et al. 424 

(2016) made similar conclusions based on analysis of long-term precipitation and CDOM 425 

records in Scandinavia, and our calibration database also supports this conclusion. This example 426 

provides an illustration of the utility of remote sensing methods to quantify CDOM changes in 427 

response to environmental drivers such as precipitation, temperature and land cover changes. 428 

 429 

4. Conclusions 430 

This paper demonstrates that remote sensing using satellite-based sensors can play an 431 

important role in providing census-level CDOM data over large areas at high temporal and 432 

spatial resolution. The constellations of L8/OLI, upcoming Landsat 9/OLI and Sentinel 2/MSI 433 
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will greatly expand the capabilities to measure several optically-related water quality 434 

characteristics, including CDOM. 435 

Strong relationships for CDOM (a440) were found using both MAIN and OLI-SR 436 

atmospheric correction methods.  Atmospheric correction using MAIN substantially improved 437 

model performance, and has the advantage of being able to harmonize the Rrs values of L8/OLI 438 

and S2/MSI, which will be important for automated image processing and near real-time 439 

monitoring. The range of a440 values in our calibration dataset (0.2-32.5 m-1) likely represents the 440 

general distribution of CDOM throughout Minnesota.  441 

Although further investigation of CDOM levels in shallow open-water wetlands of 442 

agricultural areas should be undertaken, our results indicate that assessment of CDOM at 443 

regional (statewide) scales is feasible using Landsat and Sentinel data. Such assessments can 444 

provide the basis for numerous regional-scale analyses related to CDOM, such as (a) change 445 

detection, as discussed above, (b) evaluating water clarity issues (e.g., Brezonik et al. 2019a), (c) 446 

quantifying patterns of temperature structure, (d) estimating carbon storage and mercury levels in 447 

lakes and wetlands, (e) predicting photochemical reaction rates in surface waters, and (f) 448 

assessing water treatability metrics, such as chlorine demand and disinfection byproduct 449 

formation (Chen et al. 2019). This approach could be extended to other regions, providing 450 

similar results with appropriate model tuning and validation.   451 
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Figure 1. Minnesota 2013 land cover map (Rampi et al., 2016) with ecoregion boundaries 

(Omernik and Griffith, 2014). 

 

 



 

Figure 2. Landsat 8 CDOM models using MAIN (left) and SR (right) Rrs products. 

 

 

 

 



 
Figure 3. In situ a440 data sorted from low to high with resulting MAIN and SR model-derived 

a440 showing increasing divergence with increasing in situ a440. The shading represents low, 

medium, and high CDOM levels. 

 

 

 

 

 



 
Figure 4. Mean 2015-2016 lake-level CDOM map with blowup of the Ely lakes area. 

 

 

 

 



 
Figure 5. Percent change in a440 between 2015 compared to 2016 for each ecoregion.  Increase 

of a440 between 2015 and 2016 due to increased precipitation in 2016 is focused in ecoregions 

with high coverage of forest and wetlands (NLF and NMW) while a440 decreases are in 

agricultural ecoregions (LAP, NGP and WCBP). 



Table 1. Landsat 8 images used for calibration/validation and images used for 2015 and 2016-17 

CDOM maps and associated number of ground-based (a440) measurements. 

Purpose Sensor Date Path Rows N 

calibration, 2015 map  L8/OLI 8/14/2015 26 27-28 33 

2015 map L8/OLI 9/20/2015 29 26-28  

calibration, 2015 map  L8/OLI 9/29/2015 28 26-30 24 

2015 map L8/OLI 11/7/2015 29 26-29  

calibration, 2015 map  L8/OLI 11/9/2015 27 26-30 9 

calibration, 2016 map  L8/OLI 7/22/2016 27 26-29 53 

calibration, 2016 map  L8/OLI 8/30/2016 28 26-28 131 

2016 map L8/OLI 11/4/2016 26 26-30  

2016 map L8/OLI 11/9/2016 29 26-30  

2016 map L8/OLI 11/11/2016 27 26-30  

2016 map L8/OLI 5/13/2017 28 28-30  

2016 map L8/OLI 9/9/2017 29 26-30  

Validation S2/MSI 8/13/2018 MN_Middle MN_N 95 

Validation L8/OLI 8/13/2018 27 28-30 62 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Error analysis for (a) L8 calibration dataset of MAIN and EROS SR CDOM models 

and (b) validation dataset for L8 and S2 models showing mean absoulte error (MAE) in three 

ranges of a440. 

 

(a) Calibration data CDOM range (a440, m-1) 

Model 0-3 3-10 10-33 All 

MAE (MAIN), m-1 0.42 1.79 6.07 1.61 

MAE (EROS SR), m-1 0.43 2.05 7.10 1.82 

N* 147 67 36 250 

     

(b) Validation data     

L8-OLI MAE, m-1; (N) 1.46 (49) 2.26 (12) 2.43 (1) 1.63 (62) 

S2-MSI MAE, m-1; (N) 1.58 (79) 2.90 (15) 2.93 (1) 1.80 (95) 
    * N is the number of data points in each range. 

 
 

 

  

 



Table 3. Summary statistics and quantile information for 2015 and 2016 CDOM (a440, m-1) in 

waterbodies of Minnesota’s six main ecoregions. 

 

a). All measured waterbodies: 2015 

 Ecoregion 

Statistic All NLF NMW NCHF WCBP NGP LAP 

Mean      3.54      4.83    6.45        2.05      3.25     2.99      2.89 

Std dev      4.28      5.37    5.89        1.96      3.29     2.92      2.99 

Std err mean      0.04      0.07    0.64        0.03      0.14     0.14      0.15 

Minimum      0.16      0.16    0.71        0.20      0.25     0.55      0.30 

Quantiles: 

   10% 

 

     0.76 

     

     0.69 

 

   1.18 

   

       0.79 

 

     1.02  

 

    1.10 

 

     0.95 

   25%      1.15      1.17    2.22        1.07      1.55     1.52      1.30 

Median (50%)      1.91      2.52    4.60        1.57      2.29     2.08      1.87 

   75%      3.82      6.69    7.96        2.32      3.57     3.30      3.19 

   90%      8.62    12.83  17.27        3.46      6.05     5.56      5.77 

Maximum    25.50    25.50  25.50      25.50    25.50   25.50    23.60 

N 10,782 5,081  83  4196  583 407  402 

 

b) All measured waterbodies: 2016 

 Ecoregion 

Statistic All NLF NMW NCHF WCBP NGP LAP 

Mean     4.90      7.53     9.70        2.58      2.50     2.49      2.13 

Std dev     6.72      8.40     7.91        3.57      2.32     2.91      2.65 

Std err mean     0.06      0.11     0.83        0.05      0.08     0.14      0.13 

Minimum     0.10      0.20     0.51        0.21      0.32     0.10      0.20 

Quantiles: 

   10% 

 

    0.67 

 

     0.70 

 

    1.23 

 

       0.64 

 

     0.79 

 

    0.72 

 

     0.51 

   25%     1.03      1.22     2.93        0.92      1.18     1.00      0.81 

Median (50%)     1.93      3.26     6.99        1.48      1.81     1.62      1.37 

   75%     4.81    11.89   16.69        2.59      2.85     2.87      2.29 

   90%   17.03    23.59   23.44        5.02      4.84     5.18      4.30 

Maximum   25.50    25.50   25.50      25.50    19.44   25.50    23.70 

N 11,565 5,337    91 4,451  748 411  406 

 

 

 

 

 



Table 4. Summary statistics and quantile information for 2015-2016 average CDOM (a440, m-1) 

for all measured waterbodies and lakes and reservoirs (without open-water wetlands) only in 

Minnesota and its six main ecoregions. 

 

a) All measured waterbodies 
 

 Ecoregion 

Statistic All NLF NMW NCHF WCBP NGP LAP 

Mean      4.34      6.31    8.47      2.46      2.87     2.81     2.56 

Std dev      5.34      6.63    6.70      2.94      2.36     2.69     2.64 

Std err mean      0.05      0.09    0.70      0.04      0.09     0.13      0.13 

Minimum      0.10      0.10    0.70      0.24      0.34     0.53      0.25 

Quantiles: 

   10% 

 

     0.80 

 

     0.74 

 

   1.54 

 

     0.80 

 

     1.00 

 

    1.02 

 

     0.79 

   25%      1.19      1.29    2.64      1.08      1.46     1.39      1.13 

Median (50%)      2.03      3.20    6.11      1.60      2.21     1.91      1.72 

   75%      4.63      9.76   13.54      2.52      3.34     3.22      2.77 

   90%    12.79    17.54   17.62      4.40      5.38     5.37      5.16 

Maximum    25.50    25.50   25.50    25.50    15.82   25.50    22.14 

N 11,625  5,378   91  4,462  753  411  408 

 

 

b) Lakes and reservoirs only 

 

 Ecoregion 

Statistic All NLF NMW NCHF WCBP NGP LAP 

Mean     4.21      5.98    7.30        1.92      2.28     2.37      2.11 

Std dev     5.34      6.43    6.56        1.98      1.67     1.66      2.17 

Std err mean     0.06      0.10    0.81        0.04      0.10     0.12      0.16 

Minimum     0.10      0.10    0.70        0.31      0.49     0.53      0.25 

Quantiles: 

   10% 

       

    0.75 

 

     0.71 

 

   1.29 

 

       0.76 

 

     0.91 

 

    0.88 

 

     0.71 

   25%     1.08      1.20    2.15        0.97      1.22     1.27      1.06 

Median (50%)     1.84      2.92    5.38        1.40      1.78     1.87      1.44 

   75%     4.50      9.15  10.43        2.11      2.69     3.08      2.32 

   90%   12.97    16.89  17.40        3.35      4.28     4.55      4.07 

Maximum   25.50    25.50  25.16      25.50    13.52   10.39    20.94 

N 8,182 4,461  65  2,911  279  183  188 
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